Editing Intuitive Atmospheric Entry
Jump to navigation
Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.
The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision | Your text | ||
Line 1: | Line 1: | ||
[[Category:Reentry tutorials]][[Category:Tutorials]] | [[Category:Reentry tutorials]][[Category:Tutorials]] | ||
− | + | It is a common complaint on the Orbiter message boards that the aerodynamics on the Space Shuttle model are screwed up. This is usually reported after a person deorbits the vehicle, puts it in the right angle of attack... and then bounces off the atmosphere several times and overshoots the Cape. I know, I've done it myself. Here's how to enter the correct way. | |
Note: The aerodynamics of the stock Shuttle Atlantis which comes with Orbiter ''really are'' screwed up. It works great during launch, orbit, and the final gliding approach (Mach < 5.0), but in the hypersonic region it just doesn't work. I don't believe it is possible to do a good entry with it. I personally fly the [[Shuttle Fleet]] 3.9.2 myself, but I have heard many reports in the forum that the DeltaGlider III works also. | Note: The aerodynamics of the stock Shuttle Atlantis which comes with Orbiter ''really are'' screwed up. It works great during launch, orbit, and the final gliding approach (Mach < 5.0), but in the hypersonic region it just doesn't work. I don't believe it is possible to do a good entry with it. I personally fly the [[Shuttle Fleet]] 3.9.2 myself, but I have heard many reports in the forum that the DeltaGlider III works also. | ||
Line 138: | Line 138: | ||
*kft = 1000 feet, 1000ft=304.8m | *kft = 1000 feet, 1000ft=304.8m | ||
*ft=foot, 1ft=0.3048m | *ft=foot, 1ft=0.3048m | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
The most important thing is to have the correct altitude and airspeed for your distance from the target. Don't worry quite so much about vertical speed, just use it as a guideline to help you hit the altitude targets. Worry least of all about the roll. For one thing, this is for the real shuttle, and the Orbiter model doesn't have quite the same aerodynamic properties. Also, the roll reversals depend on exactly when and where you reenter at. Use whatever roll you need to get the sink rate you want, and roll reverse whenever you need to, to keep moving towards the target. | The most important thing is to have the correct altitude and airspeed for your distance from the target. Don't worry quite so much about vertical speed, just use it as a guideline to help you hit the altitude targets. Worry least of all about the roll. For one thing, this is for the real shuttle, and the Orbiter model doesn't have quite the same aerodynamic properties. Also, the roll reversals depend on exactly when and where you reenter at. Use whatever roll you need to get the sink rate you want, and roll reverse whenever you need to, to keep moving towards the target. | ||
Line 211: | Line 151: | ||
{{HasPrecis}} | {{HasPrecis}} | ||
− | |||
− |