Editing Talk:AMSO

Jump to navigation Jump to search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
 
==Weitere Analyseergebnisse zum Apollo 13 – Film==
 
 
Hier weitere Analyseergebnisse zum Apollo 13-Film, der am 13.11.2016 vom TV- Sender RTL II ausgestrahlt wurde:
 
1. Angeblich sollte in der Startphase aus der 2.Stufe der Saturnrakete eines der fünf J-2-Triebwerke ausgefallen sein. Damit hätte Apollo 13 niemals den Erdorbit, geschweige denn das All erreicht, weil sich die Brennschlussgeschwindigkeit um 0,6 km/s reduziert hätte! Denn: Entsprechend der Raketengrundgleichung 
 
vB= ve * ln (Ml+ MTr): Ml = ve * ln (Mo: Ml)           (1)
 
 
könnte man mit den drei Stufen nach einer Modifikation der Formel (1) theoretisch eine maximale Bahn- und Brennschlussgeschwindigkeit von
 
vB=2,6 km/s*ln (2940:654) + 4,2 km/s* [ln(654:164) + ln (164:45)] ≈
 
2,6 km/s*1,5 + 4,2*km/s (1,38 +1,29) = 3,9 km/s+4,2 km/s*2,67 =
 
3,9 km/s+ 11,2 km/s = 15,1 km/s         (2)
 
 
ohne Berücksichtigung der Gravitation und des Luftwiderstandes erzielen. Anderseits muss die effektive Ausströmgeschwindigkeit der 2. und 3. Stufe von 4200 m/s mehr als angezweifelt werden, da die theoretisch maximale Ausströmgeschwindigkeit bei der Treibstoffkombination  Wasserstoff und Sauerstoff  der J-2-Triebwerke bei 5090 m/s liegt und bei einem Brennkammerdruck von 50 bar und einen Adiabatenexponenten von λ=0,1,25 lediglich ve=0,7 *vmax in den sechziger Jahre erreicht werden konnten (Paramater laut der NASA und Leitenberg, 2014). Damit hätte man höchstens eine ve von 
 
ve=0,7* 5090 m/s = 3563 m/s ≈ 3,6 km/s (3)
 
erzielen können. Die Brennschlussgeschwindigkeit hätte sich somit zunächst einmal  insgesamt (nach 2) auf
 
vB=2,6 km/s*ln (2940:654) + 3,6 km/s* [ln(654:164) + ln (164:45)] ≈
 
2,6 km/s*1,5 + 3,6*km/s (1,38 +1,29) = 3,9 km/s + 3,6 km/s*2,67 =
 
 
3,9 km/s+ 9,6 km/s = 13,5 km/s (4)
 
reduziert. Fällt nun eines der fünf J-2-Triebwerke aus, die jeweils ca. 100 Tonnen Treibstoff verbrannten, dann ergibt sich folgende Bilanz der Brennschlussgeschwindigkeit
 
vB=2,6 km/s*ln (2940:654) + 3,6 km/s* [ln [(656-100):164] + ln (164:45)] ≈
 
2,6 km/s*1,5 + 3,6*km/s (1,22 +1,29) = 3,9 km/s+ 3,6 km/s*2,51 = 3,9 km/s + 9,0 km/s=
 
12,9 km/s. (5)
 
 
Es tritt damit eine Reduktion der Brennschlussgeschwindigkeit von immerhin 0,6 km/s auf. Und diese 0,6 km/s sind entscheidend für den Eintritt in den Erdorbit! 
 
2. Die Startphase von Apollo 13 soll 12 Minuten und 20 Sekunden (entspricht 740 s) entsprechend dem Filmszenario gewährt haben. Nach NASA-Angaben und Leitenberg (2014) betrug die Startphase insgesamt aber  nur 710 s (1. Stufe 120 s+ 2.Stufe 390 s+ 3.Stufe 200 s = 710 s) Die Differenz beträgt somit 30 s.   
 
3. Wie auf einer Tafel zu erkennen war, flog Apollo 13 in einer Achter-Schleife  zum Mond und wieder zurück zur Erde. Dies hätte  ca. eine 1,4 Mal höhere Treibstoffmenge bzw. eine entsprechend höhere Geschwindigkeit erforderlich gemacht! 
 
4. Kurz vor der Re-Entry-Phase soll der Hitzeschild von Apollo 13 umgedreht worden sein. Wie sollte denn dies geschehen? Denn: Der Hitzeschild befindet sich vor dem Kommando-Modul.
 
5. In der Re-Entry-Phase rasten die Astronauten mit 11,2 km/s in die Atmosphäre der Erde. Es hätte die Geschwindigkeit von 11, 2 km/s auf faktisch null km/s abgebremst werden müssen. Damit hätte nach Umformung der Gleichung
 
Ekin=Eth= 0,5 m*v²= T*m*R*λ (6)
 
eine Temperatur von
 
T= 0,5 v²: (R* λ)= 0,5*1,214 *10hoch 8 K: (400* 1,4) ≈ 1,1 *10hoch5 = 110.000 K (7)
 
an der Nase des Kommandomoduls generiert werden müssen. Nach Wolff (1967) reduziert sich die Temperatur auf ca. 45.000 K, weil ein Teil der Energie abgestrahlt  wird.  Mit anderen Worten: Apollo 13 wäre bei Entwicklung von 45.000 K wie eine Sternschnuppe nach (6) und (7) verglüht. Eine andere Alternative: Das CSM von Apollo 13 wäre mittels eines Raketentriebwerkes abgebremst worden. Dazu wäre eine Treibstoffmenge von
 
MTr= [1- (1:e vb:ve)]*Mo= [1-(1: 2,72 11,2:2,6)*30 t= 29,6 t  (8)
 
erforderlich gewesen. Es standen im CSM aber nur maximal 19 t Treibstoff zur Verfügung. Somit wäre Apollo 13 auch in diesem Falle in der Atmosphäre verglüht!  Fazit: die Film-Berater der NASA wussten anscheinend selbst nicht, wie die Apollo-13-Mission verlief. Konnten sie auch nicht, weil Apollo 13 und die anderen Apollo- Missionen niemals stattfanden.
 
Siegfried Marquardt, Königs Wusterhausen
 
 
 
 
 
  
 
==Die Astronauten von Apollo 11 bis N wären den Heldentot gestorben!==
 
==Die Astronauten von Apollo 11 bis N wären den Heldentot gestorben!==
  
 
Auf der Internetseite Onmedia.de konnte zur Strahlenbelastung in der Raumfahrt in Erfahrung gebracht werden, dass im inneren des van Allen-Gürtel (innerer Gürtel des Magnetfeldes der Erde) eine Strahlenbelastung von 0,2 Sv/h (1) vorherrschen würde. Im äußeren van Allen-Gürtel, weit von der Erde entfernt, würde sich dann die Dosisleistung auf 0,05 Sv/h (2) reduzieren. Dies ist absoluter physikalischer Blöd- und Schwachsinn! Physikalisch gesehen wäre korrekt, dass mit der Entfernung von der Erde eine Abnahme des Magnetfeldes zu konstatieren ist und somit die Strahlungsleistung (Dosisleistung) unbedingt zunehmen muss. Dies bedeutet faktisch, dass die Strahlenbelastung und somit die Dosisleistung im All außerhalb des van Allen-Gürtels bedeutend größer sein muss, wie 0,02 Sv/h! Damit muss messerscharf geschlussfolgert werden, dass die Astronauten von Apollo 11 bis N eine Strahlendosis von D=Dl*t (3) aufgenommen haben müssen.  Die Astronauten von Apollo müssten somit eine Dosis von mindestens D= 0,02 Sv/h*290 h= 5,8 Sievert aufgenommen haben. Damit wären die Astronauten von Apollo 11 den Heldentot gestorben!  S. Marquardt, Königs Wusterhausen
 
Auf der Internetseite Onmedia.de konnte zur Strahlenbelastung in der Raumfahrt in Erfahrung gebracht werden, dass im inneren des van Allen-Gürtel (innerer Gürtel des Magnetfeldes der Erde) eine Strahlenbelastung von 0,2 Sv/h (1) vorherrschen würde. Im äußeren van Allen-Gürtel, weit von der Erde entfernt, würde sich dann die Dosisleistung auf 0,05 Sv/h (2) reduzieren. Dies ist absoluter physikalischer Blöd- und Schwachsinn! Physikalisch gesehen wäre korrekt, dass mit der Entfernung von der Erde eine Abnahme des Magnetfeldes zu konstatieren ist und somit die Strahlungsleistung (Dosisleistung) unbedingt zunehmen muss. Dies bedeutet faktisch, dass die Strahlenbelastung und somit die Dosisleistung im All außerhalb des van Allen-Gürtels bedeutend größer sein muss, wie 0,02 Sv/h! Damit muss messerscharf geschlussfolgert werden, dass die Astronauten von Apollo 11 bis N eine Strahlendosis von D=Dl*t (3) aufgenommen haben müssen.  Die Astronauten von Apollo müssten somit eine Dosis von mindestens D= 0,02 Sv/h*290 h= 5,8 Sievert aufgenommen haben. Damit wären die Astronauten von Apollo 11 den Heldentot gestorben!  S. Marquardt, Königs Wusterhausen
 
 
==Astronaut hat keine Ahnung zur Astrophysik!==
 
==Astronaut hat keine Ahnung zur Astrophysik!==
  

Please note that all contributions to OrbiterWiki are considered to be released under the GNU Free Documentation License 1.2 (see OrbiterWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following hCaptcha:

Cancel Editing help (opens in new window)